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Abstract—The Murchison meteorite is a carbonaceous chondrite containing a small amount of
chondrules, variousinclusions, and matrix with occasional porphyroblastsof olivine and/or pyroxene.
It also contains amino acids that may have served as the necessary components for the origin of life.
Magnetic analyses of Murchison identify an ultrasoft magnetic component due to
superparamagnetism as a significant part of the magnetic remanence. The rest of the remanence may
be due to electric discharge in the form of lightning bolts that may have formed the amino acids. The
level of magnetic remanence does not support this possibility and points to a minimum ambient field
of the remanence acquisition. We support our observation by showing that normalized mineral
magnetic acquisition properties establish a calibration curve suitable for rough paleofield
determination. When using this approach, 1-2% of the natural remanenceleft in terrestrial rocks with
TRM and/or CRM determines the geomagnetic field intensity irrespective of grain size or type of
magnetic mineral (with the exception of hematite). The same method is applied to the Murchison
meteorite where the measured meteorite remanence determines the paleofield minimum intensity of

2002000 nT during and/or after the formation of the parent body.

INTRODUCTION

The amount of acquired magnetization in rocks can be
characterized by ratio (REM) between the natural remanence
(NRM) and saturated isothermal remanence (SIRM)
(Cisowski et al. 1983; Cisowski and Fuller 1986; Wasilewski
1977). Most of the rocks on Earth acquire thermal remanence
(TRM—the rocks temperature is lowered through the
blocking temperature) and chemical remanence (CRM—
magnetic minerals chemically precipitated) in a geomagnetic
field. Rocks can aso acquire Detridd remanent
magnetization (DRM) during the sedimentation processes.
However, this DRM is often overprinted by later CRM
acquired during the cementation processes. Methods used for
paleofield determination (Fuller 1974; Stephens and
Collinson 1974; Thellier and Thellier 1959) require an
extensive sample heating. SD (single domain) grains (<40 nm
in size) that carry the stable component of NRM have large
surfaces and, therefore, a mild heating promotes chemical
reactions destroying the origina record. We offer an
aternative approach accessing an approximate value of the
primitive paleofield information without heating the sample.

NEW METHOD

By normalizing the experimental minera TRM
acquisitions for SD, PSD (pseudo single domain), and MD
(multi domain) minerals (Dunlop and Waddington 1975;
Kletetschka, Wasilewski, and Taylor 2000; Ozdemir and
O'Reilly 1982; Tucker and O’ Reilly 1980; Wasilewski 1981)
we obtain a uniform trend, indicating that magnetic grains of
various mineral domain-states and/or mineral types saturate
near 20 mT (see Fig. 1). The only exception from thistrend is
MD hematite, which saturates near 0.1 mT due to its low
spontaneous magneti zation and demagnetizing field, allowing
domain walls to nearly saturate in magnetic fields of low
intensity (Dunlop and Kiletetschka 2001; Kletetschka,
Wasilewski, and Taylor 2000). The normalized TRM
acquisition trends allow quick and rough estimation of a
paleofield in rocks that formed in an unknown magnetic
environment. To test this approach, we used NRM and SIRM
values from 85 terrestrial samples of various origin (Table 1)
(Heinrich 1970). Statistical means of NRM/SIRM ratios are
0.009 + 0.002, 0.011 + 0.004, and 0.017 + 0.003 for
metamorphic, sedimentary (with CRM), and igneous rock
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Fig. 1. RM/SIRM (RM is aremanent magnetization, e.g. CRM, TRM) is plotted against an acquisition magnetic field for various materials.
This plot provides a basis for paleofield estimates. Data are calculated from TRM acquisitions on 40 nm titanomagnetite (Ozdemir and
O'Reilly 1982), 1900 nm and 2 mm titanomagnetite (Tucker and O’ Reilly 1980), Columbia plateau basalt (Dunlop and Waddington 1975),
iron-nickel spheres (Wasilewski 1981), and 1 mm hematite and magnetite (Kletetschka, Wasilewski, and Taylor 2000). The acquisition trend

of all data except hematite is emphasized by the dashed line.

types, respectively. The dstatistical spread is caused by
multiple remanent components in some of these rocks with
contrasting direction recorded throughout the rocks history.
When we use these statistical means in Fig. 1, we obtain
acquisition fields between 35,000 and 65,000 nT. This range
of values falls within the actual values of geomagnetic fields.
This 1% of TRM remanence left in various rock has been
noted previously. Cisowski observed that a typica ratio in
fine-grained magnetic materiad for TRM acquired in
geomagnetic field will be of an order of 10-2 (Cisowski and
Fuller 1986). However, he also points out

that any values below this component are likely related to
multiple magnetization components. Sedimentary samples
where fine-grained secondary magnetite forms by chemical
precipitation, giving rise to CRM, again gives magnetization
about 1 partin 100 of SIRM (Hart and Fuller 1988). In light of
these observations and the experimental datapresentedin Fig.
1, we apply an extension of the curve approximated by the
data (Fig. 1) for estimation of pre-existing magnetic fields
recorded in the Murchison meteorite.

MAGNETIC SIGNATURE OF MURCHISON

NRM measurements of the interior piece of Murchison

revealed a peculiar magnetic instability. The natural remanent
magnetization (NRM ~5 E-05 A mZkg, consistent with
values observed previously [Banerjee and Hargraves 1972])
drifted as soon as the sample was shielded from the terrestrial
field. This magnetic sensitivity, caused by fields aslow asthe
geomagnetic field, has never been reported in the Murchison
meteorite despite multiple magnetic analyses (Brecher and
Arrhenius 1974; Banerjee and Hargraves 1972). Similar soft
behavior has been observed on chondrules extracted from the
Bjurbole meteorite  (Kletetschka, Wasilewski, and
Berdichevsky 2001). The effect of exposing and shielding
meteorite fragments to and from the geomagnetic field,
respectively, is illustrated in Fig. 2, where the acquired/
relaxed component is shown to increase linearly with the
logarithm of time. This property is independent of further
demagnetization and/or acquisition and, thus, must be
considered when  deciphering the extraterrestrial
magneti zation signature.

The ultrasoft magnetic decay at 77 K is about 70% of
room temperature decay. However, the NRM increased more
than twice from 5 E-05 A m2/kg at 300K to 13 E-05 A m2/kg
a 77 K. Contrary to the intuition, the samples with low
coercivity do not contain the ultrasoft component and have
relatively high NRM. The SIRM/J (Js = saturation
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Fig. 2. Magnetic component gained and relaxed after exposing to and shielding from the geomagnetic field, respectively. This ultrasoft
component modifies magnetization measurements (NRM ~5 E-05 A m?/kg) during the examination and is always paralel to the external
(geomagnetic) field. The inset picture shows the size of the actual fragment of the Murchison meteorite (Smithsonian Institution).

Table 2. Hysteresis parameters for representative samples at 300 K (suffix R) and 77 K (suffix N). Js (A mZ/kg) is
saturation magnetization, SIRM (A m2/kg) is saturation remanence, Hc (mT) is coercivity, and Fr (%) is remanence |eft

after 5 minutes in magnetic vacuum.

Sample  Mass (g) JSR HcR SIRMR/JsR JsN HcN SIRMN/JN  FrR(%)
1 0.0056 3.870 8.97 0.033 3.860 10.95 0.039 99
2 0.0097 2.210 13.72 0.070 2.110 30.76 0.134 93
3 0.0030 1.110 16.10 0.132 1.700 4247 0.116 68
4 0.0059 0.768 19.30 0.114 0.931 52.80 0.175 86
5 0.0038 0.792 20.30 0.100 0.838 48.80 0.129 59
6 0.0346 0.857 21.50 0.105 0.938 42.06 0.157 60
7 0.0073 0.471 24.30 0.140 0.506 45.10 0.223 61
8 0.0509 0.532 25.80 0.140 0.668 51.30 0.181 70

magnetization) ratio (Table 2) of low coercivity samples
suggests that magnetization carriers are multi-domain grains.
Thisis also consistent with high value of Jsindicating a high
concentration of iron (Table 2). The samples with the ultrasoft
component have high coercivity and low remanence and point
to a mixture of SD and super-paramagnetic grains finely
dispersed throughout the sample. This is important because
magnetic remanence carried by SD fraction of these grainsis
stable against artificial remanence acquisition and, thus, may
preserve arecord of pre-terrestrial magnetic events.
Magnetic results from Murchison fragments (Fig. 3)
allow division of Murchison material into two distinct groups.
Group A contains six fragments with REM just under 1 E-02.

Five of these samples come from the part of the specimen
(Czech Republic) that contained the fusion crust. Therefore,
some part of each specimen was severely heated during the
meteorite landing and acquired aterrestrial TRM component.
One specimen within Group A clearly has a large level of
magnetization (NRM/SIRM ~0.01 in Fig. 3) but is part of the
Murchison interior with no evidence of fusion crust. This
specimen aso has the lowest Hc, indicating the magnetically
softest material (See Table 2, Specimen 1 with mass 0.0056
g). Closer examination revealed a multi-domain metallic
piece within this sample. Soft MD magnetic properties allow
geomagnetic field contamination, characterized by a higher
vaue of the measured natural magnetization. Soft
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Fig. 3. Natural remanent magnetization versus saturation remanence for parts of Murchison is shown in comparison with terrestrial samples

exposed to the lightning discharge (fulgurites and lodestones).

magnetization in this sample also has low stability against the
NRM demagnetization by alternating magnetic field (>90%
NRM lossin 20 mT). Group B contains only fragments from
the Murchison’s interior, and none of these fragments has a
magnetization level over 0.001 (Fig 3). AF demagnetization
of these samples revealed fairly stable NRM (<60% NRM
lossin 60 mT).

In summary, Group A has samples with strong terrestrial
magnetic components and Group B has a record of fairly
weak, stable, and possibly extraterrestrial paleofield.
Therefore, only Group B can be considered for paleofield
estimation.

RM (Remanent magnetization) values of Group B
samples are still subject to the ultrasoft component discussed
earlier. According to Fig. 2, the Murchison meteorite is
capable of acquiring amost 4 E-05 A m2/kg in several days.
To double this value, the sample would have to be exposed to
the geomagnetic field for more than 2000 years, due to the
logarithmic nature of remanence acquisition. Because the
sample landed on Earth 32 years ago, the maximum extent of
the ultrasoft component can not exceed 7 E-05 A mZ/kg
according to thelinear dependencein Fig. 2. During the course
of measurement (1-5 minutes per sample), samples acquirean
ultrasoft component of more than 1.5 E-05 A m%kg. This
component can significantly contribute to the Murchison

meteorite samples whose NRM rangeis 3-160 E-05 A m2/kg.
Ultrasoft acquisition will cause a dlight overestimate of
magnetization levelsin Fig. 3. After subtracting this ultrasoft
component (1.5 E-5 A m2/kg) from each sample’'s NRMs, the
range of magnetization levels from the Murchison interior is
between 1 E-04 and 8 E-04. To usethisrangein the acquisition
diagram (Fig. 1), we need to acknowledge the absence of
mineral acquisition data for low field values. Assuming that
the acquisition trend extends linearly into low fields, we
obtain a paleofield of at least 200 and at most 2000 nT. This
field was recorded by high coercivity fraction of magnetic
carriersand, therefore, it islikely that the M urchi son meteorite
was exposed to thisfield during its formation.

MURCHISON METEORITE AND AMINOACIDS

The Murchison meteoriteiswell known for its content of
amino acids (Engel and Macko 1997; Epstein et al. 1987,
Kvenvolden, Lawless, and Ponnamperuna 1971; Or6 1990).
The formation of organic compounds and their accumulation
is considered a prerequisite to the appearance of life on
primordial Earth (Oparin 1957). Various sources of energy,
such as heat from volcanoes, heat and ultraviolet light from
the sun, ionizing radiation from radionuclides, and electric
discharges may be responsible for massive organo-synthesis
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from prebiotic compounds. Electric discharge events (Miller
1957) probably operated during the first stages of the solar
nebula development (Desch and Cuzzi 2000). This
mechanism can be responsible for the major synthesis of
amino acids in carbonaceous meteorites. Thisis supported by
a similarity between the products and relative abundance of
the amino acids produced by electric discharge and the amino
acids present in the Murchison meteorite (Cronin and Moore
1971; Wolman, Haverland, and Miller 1972).

Models of early solar nebula evolution predict the
presence of lightning discharges due to turbulent flows
carrying dust particles rich in metal and silica (Desch and
Cuzzi 2000). These authors speculate that discharge formed
thisway is comparable and/or several times moreintense than
terrestrial lightning and occupies larger volumes and
distances during the stroke. The presence of lightning strokes
in dust during the early solar nebula development may have
been associated with magnetic field pulses stronger than
magnetic fields generated by terrestrial lightnings. The
magnetization acquired by primitive matter should closely
approach saturation magnetization according to the principles
reported for terrestrial lodestones and/or fulgurites
(Wasilewski and Kletetschka 1999). Terrestrial rocks that
experienced a lightning discharge are magnetized close to
their saturation level (>10%) and are magnetically distinct
from rocks which acquire remanence (1-2%) in the
geomagnetic field on Earth’'s surface (Wasilewski and
Kletetschka 1999). There is one exception, however: rocks
with coarse-grained hematite as discussed above. In
meteorites, however, the oxidized form of iron, hematite, is
only rarely seen and is absent from the Murchison meteorite
(Fuchs, Olsen, and Jensen 1973).

CONCLUSIONS

We offer a rough, non-distructive method for
palecintensity estimation based on normalized magnetic
mineral acquisition experimental data. We apply this method
to various terrestrial rocks and obtain geomagnetic field
intensities. When the Murchison meteorite is used, we
estimate that Murchison was exposed to a paleofield of at
least 200 nT before it entered the geomagnetic field
environment.

It becomes clear, however, that the measured specimen
from the parent body of the Murchison meteorite may not
have been subject to lightning discharges during its residence
in the interplanetary space. When the values for rocks
affected by lightning are compared with those of the
Murchison samples (Fig. 3), we see that the Murchison
meteorite would require a past presence of magnetic fields
exceeding 700,000 nT to allow amino acid formation by
lightning discharges. If the amino acidsin Murchison were, in
fact, formed by the electric discharge, this would have to
occur before the formation of the parent body of Murchison.

Dust particles associated with amino acids formed by an
electric discharge would acquire magnetization close to
saturation. However, subsequent formation of the Murchison
parent body would essentially randomize the strong magnetic
moments, lowering the level of overall magnetization. This
scenario is consistent with new isotopic and experimental
evidence that suggest that the synthesis of amino acids (or
their precursors) may have preceded the formation of the
Murchison parent body (Caro et al. 2002).
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